Atomically precise semiconductor--graphene and hBN interfaces by Ge intercalation.

نویسندگان

  • N I Verbitskiy
  • A V Fedorov
  • G Profeta
  • A Stroppa
  • L Petaccia
  • B Senkovskiy
  • A Nefedov
  • C Wöll
  • D Yu Usachov
  • D V Vyalikh
  • L V Yashina
  • A A Eliseev
  • T Pichler
  • A Grüneis
چکیده

The full exploration of the potential, which graphene offers to nanoelectronics requires its integration into semiconductor technology. So far the real-world applications are limited by the ability to concomitantly achieve large single-crystalline domains on dielectrics and semiconductors and to tailor the interfaces between them. Here we show a new direct bottom-up method for the fabrication of high-quality atomically precise interfaces between 2D materials, like graphene and hexagonal boron nitride (hBN), and classical semiconductor via Ge intercalation. Using angle-resolved photoemission spectroscopy and complementary DFT modelling we observed for the first time that epitaxially grown graphene with the Ge monolayer underneath demonstrates Dirac Fermions unaffected by the substrate as well as an unperturbed electronic band structure of hBN. This approach provides the intrinsic relativistic 2D electron gas towards integration in semiconductor technology. Hence, these new interfaces are a promising path for the integration of graphene and hBN into state-of-the-art semiconductor technology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electronic properties of graphene encapsulated with different two-dimensional atomic crystals.

Hexagonal boron nitride is the only substrate that has so far allowed graphene devices exhibiting micrometer-scale ballistic transport. Can other atomically flat crystals be used as substrates for making quality graphene heterostructures? Here we report on our search for alternative substrates. The devices fabricated by encapsulating graphene with molybdenum or tungsten disulfides and hBN are f...

متن کامل

The graphene/n-Ge(110) interface: structure, doping, and electronic properties.

The implementation of graphene in semiconducting technology requires precise knowledge about the graphene-semiconductor interface. In our work the structure and electronic properties of the graphene/n-Ge(110) interface are investigated on the local (nm) and macro (from μm to mm) scales via a combination of different microscopic and spectroscopic surface science techniques accompanied by density...

متن کامل

Semiconducting hexagonal boron nitride for deep ultraviolet photonics

Hexagonal boron nitride (hBN) has been recognized as an important material for various device applications and as a template for graphene electronics. Low-dimensional hBN is expected to possess rich physical properties, similar to graphene. The synthesis of wafer-scale semiconducting hBN epitaxial layers with high crystalline quality and electrical conductivity control is highly desirable. We r...

متن کامل

Tuning Schottky diodes at the many-layer-graphene/semiconductor interface by doping

We report on the use of bromine intercalation of graphite to perform in situ tuning of the Schottky barrier height (SBH) formed at many-layer-graphene (MLG) semiconductor interfaces. The intercalation of Br into MLG simultaneously increases interlayer separation between the graphene planes, while at the same time giving rise to an increase (decrease) in the free hole carrier density (Fermi ener...

متن کامل

Molecularly and atomically thin semiconductor and carbon nanoshells

Approaches to the formation of molecularly and atomically thin solid shells based on the transformation of thin planar films into more functional 3D precise shells are outlined. In the overview part of the present work several examples are given illustrating the possibility to obtain in bent films new effects never observed in planar films and to fabricate new nanomaterials from highly – ordere...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Scientific reports

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015